5,788 research outputs found

    Outbursts of Young Stellar Objects

    Full text link
    We argue that the outbursts of the FU Orionis stars occur on timescales which are much longer than expected from the standard disc instability model with \alpha_{c} \gtrsim 10^{-3}. The outburst, recurrence, and rise times are consistent with the idea that the accretion disc in these objects is truncated at a radius R_{i} \sim 40 \rsun. In agreement with a number of previous authors we suggest that the inner regions of the accretion discs in FU Ori objects are evacuated by the action of a magnetic propeller anchored on the central star. We develop an analytic solution for the steady state structure of an accretion disc in the presence of a central magnetic torque, and present numerical calculations to follow its time evolution. These calculations confirm that a recurrence time that is consistent with observations can be obtained by selecting appropriate values for viscosity and magnetic field strength.Comment: 13 pages, 7 figures, accepted by MNRA

    Bond graph based sensitivity and uncertainty analysis modelling for micro-scale multiphysics robust engineering design

    Get PDF
    Components within micro-scale engineering systems are often at the limits of commercial miniaturization and this can cause unexpected behavior and variation in performance. As such, modelling and analysis of system robustness plays an important role in product development. Here schematic bond graphs are used as a front end in a sensitivity analysis based strategy for modelling robustness in multiphysics micro-scale engineering systems. As an example, the analysis is applied to a behind-the-ear (BTE) hearing aid. By using bond graphs to model power flow through components within different physical domains of the hearing aid, a set of differential equations to describe the system dynamics is collated. Based on these equations, sensitivity analysis calculations are used to approximately model the nature and the sources of output uncertainty during system operation. These calculations represent a robustness evaluation of the current hearing aid design and offer a means of identifying potential for improved designs of multiphysics systems by way of key parameter identification

    The Accretion Flows and Evolution of Magnetic Cataclysmic Variables

    Full text link
    We have used a model of magnetic accretion to investigate the accretion flows of magnetic cataclysmic variables. Numerical simulations demonstrate that four types of flow are possible: discs, streams, rings and propellers. The fundamental observable determining the accretion flow, for a given mass ratio, is the spin-to-orbital period ratio of the system. If IPs are accreting at their equilibrium spin rates, then for a mass ratio of 0.5, those with Pspin/Porb < 0.1 will be disc-like, those with 0.1 < Pspin/Porb < 0.6 will be stream-like, and those with Pspin/Porb ~ 0.6 will be ring-like. The spin to orbital period ratio at which the systems transition between these flow types increases as the mass ratio of the stellar components decreases. For the first time we present evolutionary tracks of mCVs which allow investigation of how their accretion flow changes with time. As systems evolve to shorter orbital periods and smaller mass ratios, in order to maintain spin equilibrium, their spin-to-orbital period ratio will generally increase. As a result, the relative occurrence of ring-like flows will increase, and the occurrence of disc-like flows will decrease, at short orbital periods. The growing number of systems observed at high spin-to-orbital period ratios with orbital periods below 2h, and the observational evidence for ring-like accretion in EX Hya, are fully consistent with this picture.Comment: Accepted for publication in ApJ. 6 figures - included here at low resolutio

    The steady-state structure of accretion discs in central magnetic fields

    Full text link
    We develop a new analytic solution for the steady-state structure of a thin accretion disc under the influence of a magnetic field that is anchored to the central star. The solution takes a form similar to that of Shakura and Sunyaev and tends to their solution as the magnetic moment of the star tends to zero. As well as the Kramer's law case, we obtain a solution for a general opacity. The effects of varying the mass transfer rate, spin period and magnetic field of the star as well as the opacity model applied to the disc are explored for a range of objects. The solution depends on the position of the magnetic truncation radius. We propose a new approach for the identification of the truncation radius and present an analytic expression for its position.Comment: 11 pages, 7 figures, accepted by MNRA

    Equilibrium spin pulsars unite neutron star populations

    Full text link
    Many pulsars are formed with a binary companion from which they can accrete matter. Torque exerted by accreting matter can cause the pulsar spin to increase or decrease, and over long times, an equilibrium spin rate is achieved. Application of accretion theory to these systems provides a probe of the pulsar magnetic field. We compare the large number of recent torque measurements of accreting pulsars with a high-mass companion to the standard model for how accretion affects the pulsar spin period. We find that many long spin period (P > 100 s) pulsars must possess either extremely weak (B < 10^10 G) or extremely strong (B > 10^14 G) magnetic fields. We argue that the strong-field solution is more compelling, in which case these pulsars are near spin equilibrium. Our results provide evidence for a fundamental link between pulsars with the slowest spin periods and strong magnetic fields around high-mass companions and pulsars with the fastest spin periods and weak fields around low-mass companions. The strong magnetic fields also connect our pulsars to magnetars and strong-field isolated radio/X-ray pulsars. The strong field and old age of our sources suggests their magnetic field penetrates into the superconducting core of the neutron star.Comment: 6 pages, 4 figures; to appear in MNRA

    The implementation of ERP systems in Iranian manufacturing SMEs

    Get PDF
    The quest to implement Enterprise Resource Planning (ERP) software to support all main business functions has been actively pursued by in-house IT departments, software vendors and third party consultancies for over three decades. It remains a key element of many companies’ information systems strategy in the developed world, and increasingly, in the developing world. In the specific context of Iranian SMEs, there has been relatively little research on information systems in general, and very little specifically on ERP systems projects. This paper attempts to help address this dearth in the existing literature by examining three case studies of ERP systems deployment in Iranian manufacturing SMEs. It investigates the underlying information systems strategies and examines how this has been implemented in the core process areas of these companies. The analysis is based on a conceptual model that combines defined implementation phases with change dimensions and elements, which provide the basis for the development of an implementation framework for subsequent ERP projects in this business and technology environment

    Betsy Erkkila. The Whitman Revolution: Sex, Poetry, and Politics.

    Full text link
    Review of Betsy Erkkila. The Whitman Revolution: Sex, Poetry, and Politics
    • …
    corecore